Applications
For the measurement of strain in concrete.
Primarily designed to be installed prior to concrete pour, in:
- Piles.
- Beams.
- Bridges.
- Foundation slabs.
- Tunnel Segments.

Operating Principle
Internal deformations (strain) of a concrete mass are measured using a vibrating strain wire element, sealed within a gauge tube and tensioned between two end flanges. With the gauge embedded within concrete, deformation of the concrete mass causes the two gauge flanges to move relative to one another, thus altering the tension in the steel wire. As the wire tension changes, its natural frequency of vibration changes.

An externally mounted, housed electromagnetic excitation coil, within a sealed PVC housing at the midpoint of the gauge tube, is used to excite the strain wire. Connected by tough 4-core, screened cable, the coil is activated by an electrical pulse from a vibrating wire readout, which then measures the resulting frequency of vibration. Using a gauge factor, the measured frequency may be converted directly into units of strain.

Of stainless steel construction, the 150mm active length gauges may be pre-attached to rebar or tensioning cables either by tie wire wrapped around the heat shrink sleeved gauge tube or by attachment to a 2, 3 or 4 directional rosette, thereby measuring strain in several directions.

Alternatively, the gauge may be pre-cast into a concrete brickette, for subsequent casting into the structure, or grouting into holes drilled into existing structures.

Frequency readings maybe taken manually with a portable Soil Instruments Model 1030 vibrating wire logger or automatically and remotely, with a Campbell Scientific data logger. Additionally, recorded data maybe imported automatically into I-Site software for tabular and graphical data presentation.

Advantages and Limitations
- Simple in principle.
- Accurate and sensitive.
- Waterproof.
- Suitable for long cable lengths.
- Long-term stability.
- Degree of care required to avoid mechanical damage during embedment.
- Integral Thermistor.
1. Embedment Strain Gauge

Strain Gauge

Stainless steel gauge tube and gauge flanges.
Carbon steel strain wire.
PVC, resin-potted coil housing.
Heat shrink sleeved gauge tube.
153mm active length.
19mm diameter gauge flanges.
Set mid-range or for compression.

Rosettes
PVC adapter blocks machined to receive up to 4 strain gauges at 45° to each other in one plane. Push-fit ensures gauges are firmly located.

Portable VW Loggers
See Datasheet RO1-VW.

Terminal Boxes
See Datasheet RO-TB.

Dataloggers
See Datasheet D1.

Software
See Datasheet D2.

Cable
See Datasheet CA1.

2. System Performance

Active Gauge Length
153mm

Range
Max strain range: 3000µS

Sensitivity
1.0µS

Accuracy
±0.1% FS

Thermal coefficient of expansion
12 ppm/°C

Temperature Range
PWLS: -20 to +80°C

Gauge Equation
\[\Delta \varepsilon = k \times (f_1^2 - f_2^2) \times 10^{-3} \]

where:
- \(\Delta \varepsilon \) is strain change
- \(k \) is calibration factor
- \(f_1 \) is datum frequency in Hz
- \(f_2 \) is loaded frequency in Hz

Note: Positive sign indicates compressive strain.

3. Ordering Information

ST4-1 Embedment Strain Gauge
ST4-1.1 ESG set for Mid-Range
ST4-1.2 ESG set for Compression

ST4-2 Rosettes
ST4-2.1 Rosette 2 direction
ST4-2.2 Rosette 3 direction
ST4-2.3 Rosette 4 direction

CA1 Cable and Fittings
CA-3.1-4-IC 4 core screened
CA1-4.1 Joint sealing kit